Search results for "Photoluminescence spectroscopy"
showing 6 items of 6 documents
(Photo)catalyst characterization techniques: Adsorption isotherms and BET, SEM, FTIR, UV-Vis, photoluminescence, and electrochemical characterizations
2019
This chapter reports on some characterization techniques that are commonly used for catalysts and photocatalysts. Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), UV-visible (UV-Vis), photoluminescence (PL), and electrochemical characterization techniques are presented with experimental details and actual case studies from literature are discussed. The chapter starts with adsorption phenomena on (photo)catalysis and adsorption isotherms are presented. Then BET analysis technique and its applications in (photo)catalysis are explained. Morphological properties (SEM), functional groups, and the interaction of substrate (and inter…
Application of graphene quantum dots in heavy metals and pesticides detection
2020
Graphene Quantum Dots (GQDs) were produced using electrochemical oxidation of graphite rods. Obtained GQDs were gamma-irradiated in the presence of the N atoms source, ethylenediamine. Both structural and morphological changes were investigated using UV-Vis, X-ray photoelectron and photoluminescence (PL) spectroscopy as well as atomic force microscopy. The ability of both types of dots to change PL intensity in the presence of pesticides such as malathion and glyphosate, as well as copper (II) ions was detected. These preliminary results indicated a high potential of produced GQDs to be applied as non-enzymatic PL sensors for the detection of selected pesticides and metal ions. 26th Interna…
Near-IR- and UV-femtosecond laser waveguide inscription in silica glasses
2019
The influence of laser parameters on silica based waveguide inscription is investigated by using femtosecond laser pulses at 1030 nm (near-IR) and at 343 nm (UV). Negative phase contrast microscopy technique is used to measure the refractive index contrast for different photo-inscribed waveguides and shows the effects of both laser wavelength and scanning speed. In particular, UV photons have a higher efficiency in the waveguide production process as also confirmed by the lower optical losses at 1550 nm in these waveguides. These measurements are combined with micro-Raman and photoluminescence techniques, highlighting that laser exposure induces both structural modification of the silica an…
Blue lasing at room temperature in high quality factor GaN/AlInN microdisks with InGaN quantum wells
2007
The authors report on the achievement of optically pumped III-V nitride blue microdisk lasers operating at room temperature. Controlled wet chemical etching of an AlInN interlayer lattice matched to GaN allows forming inverted cone pedestals. Whispering gallery modes are observed in the photoluminescence spectra of InGaN/GaN quantum wells embedded in the GaN microdisks. Typical quality factors of several thousands are found (Q>4000). Laser action at similar to 420 nm is achieved under pulsed excitation at room temperature for a peak power density of 400 kW/cm(2). The lasing emission linewidth is down to 0.033 nm.
Preparation of Nd:YAG Nanopowder in a Confined Environment
2007
Nanopowder of yttrium aluminum garnet (YAG, Y3Al5O12) doped with neodymium ions (Nd:YAG) was prepared in the water/cetyltrimethylammonium bromide/1-butanol/n-heptane system. Aluminum, yttrium, and neodymium nitrates were used as starting materials, and ammonia was used as a precipitating agent. Coprecipitate hydroxide precursors where thermally treated at 900 degrees C to achieve the garnet phase. The starting system with and without reactants was characterized by means of the small-angle neutron scattering technique. The system, without reactants, is constituted by a bicontinuous structure laying near the borderline with the lamellar phase region. The introduction of nitrates stabilizes th…
Understanding the White-Emitting CaMoO4 Co-Doped Eu3+, Tb3+, and Tm3+ Phosphor through Experiment and Computation
2019
In this article, the synthesis by means of the spray pyrolysis method, of the CaMoO4 and rare-earth cation (RE3+)-doped CaMoO4:xRE3+ (RE3+ = Eu3+, Tb3+, and Tm3+; and x = 1, 2, and 4% mol) compounds, is presented. The as-synthesized samples were characterized using X-ray diffraction, Rietveld refinement, field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and photoluminescence (PL) spectroscopy. To complement and rationalize the experimental results, first-principles calculations, at the density functional theory level, have been performed to analyze the band structure and density of states. In addition, a theoretical method based on the calculations of surface energie…